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Abstract. The coasts are affected mainly by the wave. The wave is a complex phe-
nomenon and very important for the design of the structures that are used in the
coastal zones and beaches. This paper presents a novel control system for the gen-
eration of unidirectional irregular waves. in project and research laboratories. The
system uses digital signal processing. a feedforward neural network and a linear mo-
tor. as main elements. The research objective is to obtain a system of easy opcration
and greater efficiency. With the combined neural control. the transitory response

disappears quickly. This behavior is interpreted, in marine hydraulics, as a fast cali-
bration of experiments.

1 Introduction

The wave is a main element for to design coastal and maritime constructions [1], [2]. The
phenomenon is very complex and its mathematical representation is difficult [3], [4], [5]
{6, (71, (8], [9]. The mathematical models make possible to represent the sea disturbance
and to calculate their effects, although in many cases, they need a calibration by means of
physical modeling on reduced scale. In complex marine work designs, the physical mod-
eling on reduced scale, is essential. This paper presents a system for the generation of
spectral patterns of unidirectional irregular waves, in project and research laboratories.
The system uses digital signal processing, a neural network and a linear motor, as main
elements.

The research objective is to obtain a system of easy operation and greater efficiency
with respect to traditional methods. The transitory response disappears quickly with the
combined neural control [10], [11], [12]. This behavior is interpreted, in marine hydrau-

lics, as a fast calibration. In addition, the spectral patterns of the generated wave will have
small errors with respect to the spectral patterns of reference.
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2 Technical Support and Schemes of Operation

Fig.1 presents the combined neural control for spectral patterns generation of irregular
unidirectional wave, where:

St: Target spectrum; Sg: Generated spectrum.

The controlled process is a wave channel and the control final element is a generator
formed by a linear motor and a paddle device (fig 2). A linear motor [13] is a type of
electric motor; an induction motor in which the fixed stator and moving armature are
straight and parallel to each other (rather than being circular and one inside the other as in
an ordinary induction motor).

The maximum force offered by a linear motor is determined by its construction and is
dependent on the position of the slider in the stator. The maximum force curve is symmet-
ric to the centre of the movement range, the so-called Zero Position ZP. If the distance
between the end of the stator and the end of the slider is equal to the Zero Position ZP of
the motor, the slider is at the centre of its movement range. The Zero Position ZP can be
found in the data sheet of each linear motor and is different for each motor. In the SS
(shortened stroke) range, the slider's drive magnets are wholely inside the active part of
the stator. This provides optimum force generation and a constant maximum force over
the whole SS- stroke range. The more the slider moves away from the SS-stroke range,
the fewer of its magnets are in the active part of the stator. This means that the maximum
and effective forces are reduced linearly as the end of the stroke range S is approached.

A controller PI (proportional-integral) and an inverse neural network (INN) form the
combined control.
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Fig. 1 Combined neural control for spectral patterns generation of irregular unidirectional wave
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Fig. 2 Unidirectional wave channel and stroke—force diagram of a linear motor.
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2.1 Supervised neurocontroller system design

The combined neural control also is called supervised neurocontroller and its general
diagram is shown in Figure 3.
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Fig. 3 Supervised ncurocontroller system design.

The methodology of neurocontroller system design [15], [16] can be described briefly as
learning of a neural network to act as a controller. The control signal generation by using
the neurocontroller has the following steps:

1. Determining inverse model parameters which are used in control signal generation U,
which will be the output of this model under the effect of PID controller.

2. Learning of the neurocontroller to generate the control signal according to reference
pattern which is obtained from the previous inverse model.

3. Learning the network until the RMS value come to the lowest value as far as possible
(to minimize the resultant error).

4. Applying the control signal, generated from the neurocontroller, to the system.

5. Using the output of the system as a feedback input of the neurocontroller to generate
the following control signal.

6. Repeating the above steps until the end of patterns.

3 Wave Generation Theory

Eq. (1) is basic for the spectral analysis of a registry of irregular wave in a fixed sta-
tion, and this defines the function of spectral density S¢f) [2].
S+df 1
> —at =S(Ndf (1
j 2
This equation, nevertheless, contains an infinite number of amplitudes a, of compo-
nents of the waves, and this is not applicable to practical calculation. For the practical
analysis, a wave registry of N points is acquired, with a constant sampling period: n(At),
n(2At),...n(NAt). The analysis of harmonics of wave profile n(t), the profile can be
expressed as the well-known finite Fourier series [2], [18]}, Eq. (2)
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N/2-1 2
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The wave power spectrum can be generated by two general methods: first, in discreet
form, with a series of Fourier and the components of power of each one of the harmonics.
The second, in the continuous form, with the significant wave height and period and em-
pirical equations of spectrum such as the Mitsuyasu [2], [9], Pierson and Moskowitz
JONSWAP [2], etc., for example, the spectra of wind waves fully developed in the open
sea, can be approximated by the following standard formulas:

S(f)=0.25TH Ty £~ exp[-1.03(T;,, /)41 )

S(f)=0.205H2:T,73 £7° exp[-0.75(T; . £) ] 4)

where H,,, : significant wave height; 7, ; : significant wave period; f : the frequency.

Fig 4. presents an example of sea spectrum. The dash-dot line is the result of fitting Eq.
(4) with the values of the significant wave height and period of the record. Although some
difference is observed between the actual and standard spectra, partly because of the shal-
low water effect in the wave record, which was taken at the depth of 11m, the standard
spectrum describes the features of the actual spectrum quite well.

The wave generator of mechanical type is more useful and simple and it reproduces
better the waveforms. The theory of displacement of the beater (paddle) and the character-
istics of the generated waves are studied by several investigators [2], [3], [4], [9]). The
desired wave power spectrum is multiplied by the transfer function of the wave generator,
well known as equation of efficiency of the paddle. This transfer function is obtained
when solving the differential equation for the free boundary conditions (see Eq. S and 6)

Piston type:

H 4sinh?(2ph/ L)
F(f,hy= —= 5
= ™ aphi L+ sinh@aphi 1) %)
Flap type:
H 4sinh*(2ph/ L), 1- cosh(2ph/L)+ (2ph/ L)sinh(2ph/ L)
FO#) 2e ( 4ph/L X 4ph/ L+ sinh(dph/ L) ) (

where H is the height of the produced wave in the channel; e is the amplitude of wave
paddle at the mean water level; f stands for the wave frequency; L wavelength; h the
depth of the water in front of the paddle in the channel. The Inverse Fourier Transform is
applied to product of Eq. (3) or Eq. (4) and Eq (5) or Eq. (6) to obtain the wave signal in
time domain. The Fig. 5 presents the process of the preparation of input signal to an ir-
regular wave generator. The control systems, in general of open loop, need a relatively
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great time for the calibration of each experiment in order to generate a wave spectral pat-
tern (target spectrum).

4 FeedForward Neural Network

For identification and control of systems a FNN (FeedForward Neural Network) with
three layers is sufficient. A hidden layer is sufficient to identify any continuous function
[11], (12}, [14], [17]. The input neurons are determined by the number of frequency bands
which the spectrum is divided. The tests were made with 128 and 64 inputs. The best
results were obtained with 64 (training error and epochs). Another input neuron is added
for the different water levels in the channel. The hidden layer uses a sigmoid function.
The output layer uses a lineal function. The number of neurons of the output layer is de-
termined by the number of frequency bands, which the generated wave spectrum will be
divided (the output neurons were taken equal to the number of input neurons).
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Fig. 4 Example of spectrum of sea waves
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Fig. 5 Process of the preparation of input signal to an irrcgular wave generator

4.1 Training Patterns
The neural network topology is the following:
Input layer: 65 neurons. Output layer: 64 neurons. Hidden layer: 16 neurons.
Training Patterns:
P” :Input patterns [ (1), £(2),.......f(nf), h ]
T} : Output patterns [ (1), f,(2),.......[,(nf) ]
where f: power spectrum harmonics; h: channel level

Quality factor in the spectrum estimation:
Although the simulation of the sea disturbance is random (pseudorandom). The variability

of the spectrum is given by:

SUN=SNn "

The variability of the spectrum is determined by a distribution of chi square with two
degrees of freedom, that is the estimation by the periodogram method'[:.Z]. lq order to
reduce the variation, the temporary registry of the wave measurement is divided in a set of
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Fig. 6. Acquisition diagram for the neural network training patterns
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The training patterns for neural network are obtained with the scheme of Figure 6.

4.1.1 Example of Patterns and Control Neural Performance

Input patierrs Output patterrs

560 6m)
S (m2s)

Fraquengy. f(Hs) Frequengy, f{Hs)

Fig. 7. Example of training pattemns. Training performance is 6.97697¢™", Goal is 1¢™"". Epochs: 25

x10

25

Fig. 8 Example 1 of ncural control performance.
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Fig. 9 Example 2 of neural control performance.

Conclusions and Future Work

The coastal and marine constructions are complex and highly expensive. The optimal
design requires the physical modeling. The sea phenomena are reproduced in the research
laboratories and the designs can be tested. This constructions are “pedraplenes”, oil plat-
forms, artificial beaches, protective installations of the coasts, conservation of the ecosys-
tem, etc.

The presented work creates a novel method that uses linear motors and neural networ.ks
to generate irregular wave with high exactitude and fast calibration, obtaining itself satis-
factory results. The control is made with a distributed architecture, because the linear
motor has a system of independent control and it uses digital signal processing because
the control variable is a power spectrum.

As future work, self-learning elements will be introduced. These elements will make
possible to be creating spectral patterns during the operation of the system and to suggest
a new training of the neural network, when the conditions of channel operation have great
changes.
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